Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Wearable devices that have low-power sensors, processors, and communication capabilities are gaining wide adoption in several health applications. The machine learning algorithms on these devices assume that data from all sensors are available during runtime. However, data from one or more sensors may be unavailable due to energy or communication challenges. This loss of sensor data can result in accuracy degradation of the application. Prior approaches to handle missing data, such as generative models or training multiple classifiers for each combination of missing sensors are not suitable for low-energy wearable devices due to their high overhead at runtime. In contrast to prior approaches, we present an energy-efficient approach, referred to as Sensor-Aware iMputation (SAM), to accurately impute missing data at runtime and recover application accuracy. SAM first uses unsupervised clustering to obtain clusters of similar sensor data patterns. Next, it learns inter-relationship between clusters to obtain imputation patterns for each combination of clusters using a principled sensor-aware search algorithm. Using sensor data for clustering before choosing imputation patterns ensures that the imputation isawareof sensor data observations. Experiments on seven diverse wearable sensor-based time-series datasets demonstrate that SAM is able to maintain accuracy within 5% of the baseline with no missing data when one sensor is missing. We also compare SAM against generative adversarial imputation networks (GAIN), transformers, and k-nearest neighbor methods. Results show that SAM outperforms all three approaches on average by more than 25% when two sensors are missing with negligible overhead compared to the baseline.more » « lessFree, publicly-accessible full text available January 31, 2026
- 
            Wearable devices are being increasingly used in high-impact health applications including vital sign monitoring, rehabilitation, and movement disorders. Wearable health monitoring can aid in the United Nations social development goal of healthy lives by enabling early warning, risk reduction, and management of health risks. Health tasks on wearable devices employ multiple sensors to collect relevant parameters of user’s health and make decisions using machine learning (ML) algorithms. The ML algorithms assume that data from all sensors are available for the health monitoring tasks. However, the applications may encounter missing or incomplete data due to user error, energy limitations, or sensor malfunction. Missing data results in significant loss of accuracy and quality of service. This paper presents a novel Classifier-Aware iMputation (CAM) approach to impute missing data such that classifier accuracy for health tasks is not affected. Specifically, CAM employs unsupervised clustering followed by a principled search algorithm to uncover imputation patterns that maintain high accuracy. Evaluations on seven diverse health tasks show that CAM achieves accuracy within 5% of the baseline with no missing data when one sensor is missing. CAM also achieves significantly higher accuracy compared to generative approaches with negligible energy overhead, making it suitable for wide range of wearable applications.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
